3,007 research outputs found

    Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme

    Full text link
    We investigate the properties of holographic heat engines with an uncharged accelerating non-rotating AdS black hole as the working substance in a benchmarking scheme. We find that the efficiencies of the black hole heat engines can be influenced by both the size of the benchmark circular cycle and the cosmic string tension as a thermodynamic variable. In general, the efficiency can be increased by enlarging the cycle, but is still constrained by a universal bound 2Ï€/(Ï€+4)2\pi/(\pi+4) as expected. A cross-comparison of the efficiencies of the accelerating black hole heat engines and Schwarzschild-AdS black hole heat engines suggests that the acceleration also increases the efficiency although the amount of increase is not remarkable.Comment: 13 pages,4 figure

    A Novel Interleaving Scheme for Polar Codes

    Full text link
    It's known that the bit errors of polar codes with successive cancellation (SC) decoding are coupled. We call the coupled information bits the correlated bits. In this paper, concatenation schemes are studied for polar codes (as inner codes) and LDPC codes (as outer codes). In a conventional concatenation scheme, to achieve a better BER performance, one can divide all NlN_l bits in a LDPC block into NlN_l polar blocks to completely de-correlate the possible coupled errors. In this paper, we propose a novel interleaving scheme between a LDPC code and a polar code which breaks the correlation of the errors among the correlated bits. This interleaving scheme still keeps the simple SC decoding of polar codes while achieves a comparable BER performance at a much smaller delay compared with a NlN_l-block delay scheme
    • …
    corecore